ITGB2 (Integrin β2) Immunomodulatory Gene Variants in Premature Infants With Necrotizing Enterocolitis

^{*†}Lovya George, ^{*}Heather Menden, ^{*}Sheng Xia, ^{*}Wei Yu, ^{*}Anne Holmes, [‡]Jeffrey Johnston, [§]Kimberly J. Reid, ^{||#}Cassandra D. Josephson, ^{||}Ravi M. Patel, ^{†¶}Atif Ahmed, ^{**}Neil Mulrooney, [‡]Neil A. Miller, [‡]Emily Farrow, and ^{*†}Venkatesh Sampath

ABSTRACT

Aberrant toll-like receptor (TLR) activation is central to necrotizing enterocolitis (NEC) pathogenesis. B2 integrins regulate TLR signaling, and integrin B2 (ITGB2) deficiency causes TLR hyperresponsiveness. To test the hypothesis that ITGB2 genetic variants modulate NEC susceptibility, we sequenced the exonic ITGB2 locus to compare the prevalence of deleterious variants among 221 preterm infants with and without NEC. ITGB2 variants were not associated with NEC in our entire cohort (NEC [9/56] versus controls [16/165], P = 0.19) or in extremely low birthweight infants (ELBW, controls [7.9%] versus NEC [18.2%]; P = 0.11) but were increased compared to the populace (4.5%, gnomad.broadinstitute.org). Combined annotation-dependent depletion -predicted deleterious ITGB2 variants increased proportionately with increasing NEC severity in ELBW infants (controls [6.7%] versus medical NEC [16.7%] versus surgical NEC [19%] (P = 0.03). Although ITGB2 variants were not associated with NEC in our preterm cohort, subgroup analysis showed a trend towards enrichment with NEC severity in ELBW infants.

Key Words: genetic variants in disease of prematurity, genetic variants in necrotizing enterocolitis, integrin $\beta 2$ gene in necrotizing enterocolitis, integrin $\beta 2$ variants in necrotizing enterocolitis, necrotizing enterocolitis genetic susceptibility

(JPGN 2021;72: e37-e41)

Received September 4, 2020; accepted September 4, 2020.

- From the *Division of Neonatology, Department of Pediatrics, Children's Mercy, the [†]University of Missouri at Kansas City, the [‡]Center for Pediatric Genomic Medicine, the [§]Division of Health Services and Outcomes Research, Children's Mercy Kansas City, Kansas City, MO, the ^{||}Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, GA, the [¶]Pathology and Laboratory Medicine, Children's Mercy Kansas City, Kansas City, MO, the [#]Department of Pathology and Laboratory Medicine, Center for Transfusion and Cellular Therapies, Emory University School of Medicine, Atlanta, GA, and the **Minnesota Neonatal Physicians, PA, Maple Grove, MN.
- Address correspondence and reprint requests to Lovya George, MD, Division of Neonatology, 2401 Gillham road, Children's Mercy Kansas City, Kansas City, MO 64108 (e-mail: lgeorge@cmh.edu).
- This study was supported by Little Giraffe foundation NICU research grant (LG); Children's Mercy fellowship award (LG); HM, WY, and VS effort was partly supported by NIH [R01 DK117296-01 (VS)].
- The authors report no conflicts of interest.
- Supplemental digital content is available for this article. Direct URL citations appear in the printed text, and links to the digital files are provided in the HTML text of this article on the journal's Web site (*www.jpgn.org*).
- Copyright © 2020 by European Society for Pediatric Gastroenterology, Hepatology, and Nutrition and North American Society for Pediatric Gastroenterology, Hepatology, and Nutrition

DOI: 10.1097/MPG.000000000002941

What Is Known

- Genetic variation in immunomodulatory genes can alter susceptibility to necrotizing enterocolitis.
- Toll-like receptor (TLR)-mediated immune responses play a critical role in necrotizing enterocolitis pathogenesis.
- Deficiency of integrin β2 (ITGB2) causes hyperresponsiveness to TLR stimulation.

What Is New

- First study to explore role of *ITGB2* variants in necrotizing enterocolitis susceptibility and severity.
- The entire *ITGB2* exonic locus was sequenced to identify whether rare or common *ITGB2* variants are enriched in necrotizing enterocolitis infants.
- The prevalence of combined annotation-dependent depletion (CADD)-predicted deleterious *ITGB2* variants increased with necrotizing enterocolitis severity in extremely low birthweight infants, supporting its potential role as modulator of necrotizing enterocolitis severity in extremely low birthweight infants.

he pathogenesis of necrotizing enterocolitis (NEC) is multifactorial, involving complex interactions between intestinal microbiota and the immature immune system (1). Although several risk factors have been identified, factors implicated cannot account for significant variability in incidence and severity of NEC. This has led to the recognition that genetic factors might modulate NEC susceptibility (2). However, the genetic basis of altered immune responses in NEC remains incompletely understood (2). Studies have shown that variants in immune genes can alter the risk of NEC (3). Toll-like receptors (TLRs) regulate immune responses to bacteria and are critical for maintenance of intestinal bacterial tolerance. TLR4 recognizes lipopolysaccharide (LPS) in Gram-negative bacteria. There is increased TLR4 expression in human NEC, and activation of TLR4 by enteric bacteria leads to epithelial barrier injury and inflammation (3). Studies have shown that mice with loss of intestinal TLR4 signaling are protected against experimental NEC (3). Prior work from our group has identified TLR pathway variants as potential modulators of preterm NEC (4,5).

 β 2 integrins are molecular mediators of cell-cell interactions that are known to regulate TLR-mediated inflammatory responses (6). Integrin β 2 (ITGB2), also known as CD18, a key member of the

JPGN • Volume 72, Number 2, February 2021

Copyright © ESPGHAN and NASPGHAN. All rights reserved.

integrin family, has established roles in T-cell development and function and plays a crucial role in host defense by regulating neutrophil recruitment and apoptosis (6). Mutations in the *ITGB2* gene are an established cause of leucocyte adhesion deficiency (7). ITGB2 has also been linked to chronic colitis in human and animal models, and *ITGB2* variants are reported to play a role in Hirschsprung associated enterocolitis (7). Moreover, $Itgb2^{-/-}$ mice demonstrate hyperresponsiveness to TLR stimulation (6). As TLR activation plays a central role in NEC pathogenesis, we hypothesized that *ITGB2* genetic variants would predispose preterm infants to NEC. To test this hypothesis, we sequenced all the exons of *ITGB2* to determine the relationship between *ITGB2* variants and NEC susceptibility in premature infants.

METHODS

Data and samples were obtained from infants at the level IV NICU and the outpatient clinics at Children's Mercy Kansas City (Kansas City, MO), neonatal nurseries at Children's hospitals and clinics of Minnesota (Minneapolis, MN), and three hospitals in Atlanta, GA (Emory University Hospital Midtown, Grady Memorial Hospital, and Northside Hospital) after institutional review board approval. Informed consent was obtained from parents. Clinical data were deidentified and entered into a passwordprotected database.

Eligibility Criteria

Premature infants born at <36 weeks of gestation with stage II+ NEC and their gestational age matched controls were eligible. Infants with major congenital anomalies and known genetic diagnoses were excluded. Diagnosis and staging of NEC were based on modified Bell's criteria (8). We included infants with stage IIA+ NEC who were treated with bowel rest and antibiotics for \geq 7 days. Infants with spontaneous intestinal perforation and stage 1 NEC were excluded.

DNA Extraction and Sequencing

Blood, buccal swabs, or autopsy tissue specimens were collected for DNA isolation. DNA was extracted using the Flexigene kit (Qiagen Inc., Valencia, CA). A custom amplicon exome sequencing panel was designed to sequence all 16 coding exons of the *ITGB2* gene (TruSeq Custom Amplicon, Illumina Inc., San Diego, CA). Targeted sequencing of the entire exonic *ITGB2* gene locus at $100 \times$ coverage was performed using bar-coded, multiplexed, high-throughput sequencing (MiSeq, Illumina Inc).

Variant Annotation and Interpretation

Genetic variants were annotated using Rapid Understanding of Nucleotide variant Effect Software (9-11). Potentially deleterious variants were identified using Variant Integration and Knowledge Interpretation in Genomes software (12). Only deleterious or potentially deleterious variants (American College of Medical Genetics [ACMG] class 1–3) were included in our analysis. Variants were assigned to 5 categories for analysis: category 1 variants have been previously reported in association with human disease, category 2 variants are expected to be deleterious (loss of initiation, premature stop codon, frameshift deletion/insertion, etc.), and category 3 variants are potentially deleterious (nonsynonymous substitution, in-frame deletion/insertion, etc.) (11). Category 4 and 5 variants, not expected to be deleterious, were excluded. Identified variants were further analyzed using

Statistical Analysis

This was a prospective case-control study. To calculate power, a catalog of known missense and loss of function (LOF) ITGB2 variants (ACMG class 1-3) was collated using the ExAC population database (http://exac.broadinstitute.org/), which has exome sequencing data from 60,706 unrelated individuals. Data from ExAC estimated that potentially deleterious, missense, and LOF variants of the ITGB2 gene have a prevalence of about $\sim 6.0\%$ in the general population (database accessed on 6/6/2016). Based on the data, it was estimated that 55 infants with NEC and 160 gestational age matched controls would give us >80% power to detect a 3-fold increase in prevalence of ITGB2 variants in premature infants with NEC. Continuous variables were compared using one-way analysis of variance, and categorical variables were compared using chi-squared or Fisher's exact test. A P value of < 0.05was considered significant. For genetic analysis, the proportion of infants with and without stage II+ NEC who had \geq 1 ACMG class 1-3 variants were compared. A priori was to examine ITGB2 variants across infants with no NEC, medical NEC, and surgical NEC using the Cochran Armitage (CA) trend test in extremely low birthweight (ELBW) infants.

RESULTS

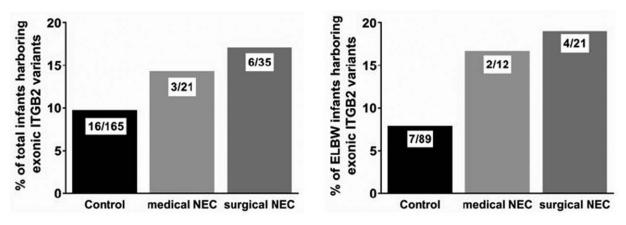
NEC Demographics

We enrolled 221 premature infants <36 weeks (23– 35 weeks), 56 with stage II+ NEC (medical NEC=21; surgical NEC=35), and 165 controls. 70.1% of infants were delivered at the gestational age <29 weeks. Infants with NEC were less likely to be inborn, have received antenatal steroids, or be Caucasian. There were no differences in gestational age, birthweight, sex, 5-minute Apgar scores, proportion that received prenatal care, clinical chorioamnionitis, or feed type between the groups (Table 1).

ITGB2 Analysis

Among the 221 infants sequenced, we identified 25 infants with >1 ACMG class 1-3 ITGB2 variants, with minor allele frequency (MAF) of individual variants varying from 0.000008 to 0.008. The number of variants varied from 1 to 5 variants per infant, with a total of 33 variants detected (Supplement Table 1, Supplemental Digital Content, http://links.lww.com/MPG/B966). Potentially deleterious ITGB2 variants were found in 16/165 (9.7%) controls and 9/56 (16.1%) NEC infants (odds ratio [OR] = 1.78, 95% confidence interval [CI]: 0.74–4.3, P = 0.19). CA tests revealed a nonsignificant trend toward enrichment of ITGB2 variants with increasing severity of disease (no NEC vs medical NEC vs surgical NEC; P = 0.18) (Fig. 1A). Interestingly, the prevalence of ITGB2 variants among NEC infants (16.1%) and controls (9.7%) was higher compared to the population distribution of similar ITGB2 variants in the genome aggregation database (4.3%, 10,282/239,243; accessed May 2020) or ExAC (6%; accessed June 2016) databases.

Subgroup analysis of infants <1000 g (ELBW, n=122) revealed similar demographic/clinical risk factors for NEC (Supplemental Table 2, Supplemental Digital Content, *http://links.lww.com/ MPG/B967*). ACMG class 1–3 variants were found in 7/89 (7.9%) of controls and 6/33 (18.2%) of NEC infants (OR = 2.6, 95% CI: 0.8–8.4, P = 0.11). CA tests revealed a nonsignificant enrichment of *ITGB2* variants (P = 0.10) with increasing NEC severity (Fig. 1B).


TABLE 1. Demographics

	NEC severity			
	Medical n=21	Surgical $n = 35$	None $n = 165$	P value
Significant variant	3 (14.3%)	6 (17.1%)	16 (9.7%)	0.181
Birthweight	999.5 ± 458.6	965.3 ± 399.7	972.9 ± 331.0	0.937
Weight < 1000 gm	12 (57.1%)	21 (60.0%)	89 (53.9%)	0.793
Gestational age in wk.	27.6 ± 3.7	27.1 ± 2.9	27.1 ± 2.7	0.740
Gestational age <29 wk	16 (76.2%)	25 (71.4%)	114 (69.1%)	0.786
Inborn	13 (61.9%)	13 (37.1%)	146 (88.5%)	< 0.001
Race				0.048
В	10 (55.6%)	16 (50.0%)	53 (32.9%)	
W	8 (44.4%)	16 (50.0%)	108 (67.1%)	
Received prenatal care	17 (89.5%)	31 (91.2%)	158 (95.8%)	0.265
Received ANS	13 (68.4%)	25 (78.1%)	145 (87.9%)	0.021
Mat. Chorioamnionitis	2 (9.5%)	7 (20.0%)	25 (15.2%)	0.169
Sex				0.423
F	10 (47.6%)	12 (34.3%)	76 (46.1%)	
М	11 (52.4%)	23 (65.7%)	89 (53.9%)	
5-min APGAR	6.8 ± 2.2	7.0 ± 2.2	6.9 ± 2.0	0.902
Feed type				0.079
BM	16 (76.2%)	14 (46.7%)	89 (53.9%)	
BOTH	1 (4.8%)	6 (20.0%)	38 (23.0%)	
FORM	3 (14.3%)	9 (30.0%)	37 (22.4%)	
NONE	1 (4.8%)	1 (3.3%)	1 (0.6%)	
Missing	~ /	5	× /	

Continuous variables compared using one-way analysis of variance. Categorical variables compared using chi-squared or Fisher exact test. ANS = antenatal steroids; BM = breast milk; FORM = formula; Mat = Maternal; NEC = necrotizing enterocolitis.

ITGB2 Analysis Based on Combined Annotation Dependent Depletion Scores

To incorporate software-based prediction of variant deleteriousness in our analysis, we calculated CADD scores (13). Among the 33 variants, 28 variants had a scaled CADD score of >10 (top 10% of all deleterious variants in human genome) and was used for further analysis (Supplement Table 1, Supplemental Digital Content, *http://links.lww.com/MPG/B966*). Based on this, predicted deleterious *ITGB2* variants were found in 14/165 (8.5%) versus 2/21 (9.5%) versus 5/35 (14.3%) of control versus medical NEC versus surgical NEC infants (CA trend; P = 0.15). In ELBW infants, we noted a significant enrichment of ITGB2 variants with increasing NEC severity (control vs medical NEC vs surgical NEC; 6/89 [6.72%] vs 2/12 [16.7%] vs 4/21 [19%], CA trend; P = 0.032).

FIGURE 1. Distribution of ITGB2 variants by NEC severity in the entire cohort (1A) and among the infants with birthweight <1000 g (1B): (A) The proportion of infants who had ACMG class 1–3 variants in the ITGB2 gene are compared among infants with no NEC 16/165 (9.7%), medical NEC 3/21 (14.3%), and surgical NEC 6/35 (17.1%) (P=0.18). (B) Subgroup analysis of infants with birthweight <1000 g shows ITGB2 variants in 7/89 (7.9%) infants with no NEC, 2/12 (16.7%) in infants with medical NEC, and 4/21 (19%) in infants with surgical NEC [(p= 0.105) Cochran Armitage Trend test]. ACMG = American College of Medical Genetics; ELBW = extremely low birthweight infants; ITGB2 = integrin β 2; NEC = necrotizing enterocolitis.

www.jpgn.org

Copyright © ESPGHAN and NASPGHAN. All rights reserved.

DISCUSSION

Although there is increasing acceptance that NEC susceptibility is genetically determined, very few genetic loci have been validated. We have previously published data on *TLR* genetic variants (4,5) and reported that *SIGRR* variants may increase susceptibility to NEC through loss of inhibition of TLR4-mediated inflammation. Hartel et al (14) found that while no single *NOD2* (nucleotide binding oligomerization domain containing protein 2) variant was associated with NEC, the presence of 2 or more *NOD2* variants was associated with increased NEC risk. A major limitation of most published studies includes not examining rare variants (MAF < 1%), which, although individually rare, contribute to >80% of genetic variation in human population (15). Jilling et al (16) performed the first genome wide association study in NEC and identified a cluster of single nucleotide polymorphisms in chromosome 8 that have the strongest association for NEC.

We targeted ITGB2, a known regulator of TLR signaling, as aberrant TLR activation is implicated in NEC. B2 integrins can limit TLR signaling by inhibiting the activation of NF κ B (6). Yee et al (6) demonstrated that B2 integrin-deficient macrophages are hyperresponsive to TLR stimulation, and $Itgb2^{-/-}$ mice have increased production of LPS-induced cytokines. To identify rare variants in ITGB2 gene that could affect NEC risk, we sequenced all the 16 exons and splice sites in 221 infants. We found nonsignificant enrichment of potentially deleterious ITGB2 variants in surgical NEC (almost 2-fold). CADD-predicted ITGB2 variants proportionately increased with NEC severity in ELBW infants in subgroup analysis. Our study was powered based on the expected prevalence of deleterious/potentially deleterious *ITGB2* variants being $\sim 6\%$. The prevalence of deleterious/potentially deleterious variants in ITGB2 was 16.1% (×3 times population prevalence) in NEC infants. However, the prevalence of ACMG class 1-3 variants among controls in our study population was almost twice as planned (9.7%). Although the study was adequately powered based on prevalence in the general population, we were underpowered to detect a significant difference in our study population in view of the higher than expected prevalence of variants in controls. The higher prevalence among controls could also be from enrichment of ITGB2 variants in premature infants. Although we did find a significant trend toward enrichment of ITGB2 variants with NEC severity in ELBW infants, suggesting a potential role in modulating NEC severity in most vulnerable population, the small N limits the generalizability of our results until replication in an independent cohort.

The primary pathophysiologic process in NEC is aberrant activation of mucosal innate immune signaling with subsequent breakdown of the mucosal barrier, and neutrophil-mediated injury is a secondary insult. This could be another potential reason why *ITGB2*, which plays a very significant role in neutrophil recruitment and apoptosis, does not seem to have a significant effect on NEC susceptibility but might play a role in modulating the severity of disease. Although we compared the prevalence of ACMG class 1-3variants between case and controls, we did not evaluate functionality of class 3 variants. Analysis based on CADD-predicted thresholds of top 10% of deleterious variants in the human genome suggested enrichment of *ITGB2* variants with NEC severity in ELBW infants. A larger cohort of ELBW infants and in vitro functional analysis would have clarified the relationships between *ITGB2* variants and NEC severity better.

The known role of *ITGB2* gene in immunomodulatory pathways and colonic inflammation supports a potential role for *ITGB2* variants in NEC pathogenesis. In our study, known epidemiological variables associated with NEC, such as African American race, and lack of prenatal steroids were confirmed (17,18). Although we did

not find associations between ITGB2 variants and NEC in our cohort, we found a non-statistically significant enrichment in surgical NEC in ELBW infants and a significant association with increasing NEC severity when only CADD-predicted deleterious variants were analyzed. The present study has several strengths, including a comprehensive sequencing strategy that allows for querying of all rare and common variants, use of standardized guidelines for classifying variants, analysis based on predicted deleteriousness scores (CADD), prospective case-control design, and powered study. Limitations include lack of adequate power for subgroup analysis and lack of functional analysis of identified variants. Despite these limitations, this is one of the largest studies to date that has used a comprehensive sequencing-based targeted approach. Considering that NEC susceptibility is likely to be polygenic, approaches incorporating ITGB2 variants to other putative NEC susceptibility loci such as NOD2 and SIGIRR may enhance risk estimates attributable to genetic factors (5,14,19,20).

REFERENCES

- 1. Neu J, Walker WA. Necrotizing enterocolitis. N Engl J Med 2011;364:255-64.
- Cuna A, George L, Sampath V. Genetic predisposition to necrotizing enterocolitis in premature infants: current knowledge, challenges, and future directions. *Semin Fetal Neonatal Med* 2018;23:387–93.
- Leaphart CL, Cavallo J, Gribar SC, et al. A critical role for TLR4 in the pathogenesis of necrotizing enterocolitis by modulating intestinal injury and repair. *J Immunol* 2007;179:4808–20.
- Sampath V, Le M, Lane L, et al. The NFKB1 (g.-24519delATTG) variant is associated with necrotizing enterocolitis (NEC) in premature infants. J Surg Res 2011;169:e51–7.
- Sampath V, Menden H, Helbling D, et al. SIGIRR genetic variants in premature infants with necrotizing enterocolitis. *Pediatrics* 2015;135:e1530-4.
- Yee NK, Hamerman JA. β2 integrins inhibit TLR responses by regulating NF-κB pathway and p38 MAPK activation. *Eur J Immunol* 2013;43:779–92.
- Moore SW, Sidler D, Zaahl MG. The ITGB2 immunomodulatory gene (CD18), enterocolitis, and Hirschsprung's disease. *J Pediatr Surg* 2008;43:1439–44.
- Walsh MC, Kliegman RM. Necrotizing enterocolitis: treatment based on staging criteria. *Pediatr Clin North Am* 1986;33:179–201.
- Saunders CJ, Miller NA, Soden SE, et al. Rapid whole-genome sequencing for genetic disease diagnosis in neonatal intensive care units. *Sci Transl Med* 2012;4:154ra135.
- McLaren W, Pritchard B, Rios D, et al. Deriving the consequences of genomic variants with the Ensembl API and SNP effect predictor. *Bioinformatics* 2010;26:2069–70.
- Richards CS, Bale S, Bellissimo DB, et al. ACMG recommendations for standards for interpretation and reporting of sequence variations: Molecular Subcommittee of the ACMG Laboratory Quality Assurance Committee. *Genet Med* 2008;10:294–300.
- Willig LK, Petrikin JE, Smith LD, et al. Whole-genome sequencing for identification of Mendelian disorders in critically ill infants: a retrospective analysis of diagnostic and clinical findings. *Lancet Respir Med* 2015;3:377–87.
- 13. Rentzsch P, Witten D, Cooper GM, et al. CADD: predicting the deleteriousness of variants throughout the human genome. *Nucleic Acids Res* 2019;47:D886–94.
- Hartel C, Hartz A, Pagel J, et al. NOD2 loss-of-function mutations and risks of necrotizing enterocolitis or focal intestinal perforation in very low-birth-weight infants. *Inflamm Bowel Dis* 2016;22:249–56.
- Tabor HK, Auer PL, Jamal SM, et al. Pathogenic variants for Mendelian and complex traits in exomes of 6,517 European and African Americans: implications for the return of incidental results. *Am J Hum Genet* 2014;95:183–93.
- Jilling T, Ambalavanan N, Cotten CM, et al. Surgical necrotizing enterocolitis in extremely premature neonates is associated with genetic variations in an intergenic region of chromosome eight. *Pediatr Res* 2018;83:943–53.

- Llanos AR, Moss ME, Pinzon MC, et al. Epidemiology of neonatal necrotizing enterocolitis: a population-based study. *Pediatr Perinat Epidemiol* 2002;16:342–9.
- Roberts D, Brown J, Medley N, et al. Antenatal corticosteroids for accelerating fetal lung maturation for women at risk of preterm birth. *Cochrane Database Syst Rev* 2017;3:CD004454.
- Sampath V, Bhandari V, Berger J, et al. A functional ATG16L1 (T300A) variant is associated with necrotizing enterocolitis in premature infants. *Pediatr Res* 2017;81:582–8.
- Khera AV, Chaffin M, Aragam KG, et al. Genome-wide polygenic scores for common diseases identify individuals with risk equivalent to monogenic mutations. *Nat Genet* 2018;50:1219–24.